

PRIMROSE KITTEN
Tutorials for Physics \& Chemistry
Kittens are easy to understand, let's make Science easy as well...!

New Specification, for teaching from 2106 and for exams from 2108

Maths (The Chemistry Bits) AQA, Higher Chemistry Separate Science GCSE

Other books in this series

Previously published...

- Maths as Calculator skills for Science Students

March 2016

- Maths (The Physics bits) for GCSE Core Science

April 2016

- Maths (The Chemistry bits) for GCSE Core and Additional Science May 2016
- Maths (The Chemistry bits) for GCSE Triple Science

May 2016

- Maths (The Chemistry bits) for Separate Science GCSE

July 2016

- Maths (The Chemistry bits) for Combined Science GCSE

July 2016
Coming soon...

- Maths (The Physics bits) for GCSE Additional Science
- Maths (The Physics bits) for GCSE Triple Science
- Summer Flying Start for A-Level Chemistry
- Summer Flying Start for A-Level Physics
- Maths for A-Level Chemistry Year 12
- Maths for A-Level Chemistry Year 13
- Maths for A-Level Chemistry Year 12 and year 13

WOW - that is a long list! Chances are if you want a maths/science book I've written it or I am writing it.

For full book listings visit www.PrimroseKitten.com

First published 2016
All copyright Primrose Kitten®
Image credits, Hamham Art, Creative House Shuttershock and pixabay

Acknowledgements

Thank you to my husband for putting up with my spending every night writing this and for correcting all of my SPG mistakes. To my son for being the inspiration behind this project.

Contents

Introduction 3
Periodic Table 4
Mass number and atomic number 5
The number of protons, neutrons and electrons 6
Isotopes 7
Ions 8
Elements and atoms 9
Brackets. 10
Conservation of mass 11
Balancing equations 12
Easy-grade 5. 12
Medium - grade 7 13
Hard - grade 9/A-Level 14
Relative formula mass 15
Calculating relative atomic mass or relative isotopic mass 16
Moles 17
Percentage yield 18
Atom economy 19
Half equations 20
Reacting masses 21
Avogadro's constant and gas volume 22
Endothermic and exothermic reactions 23
Bond energy rules 23
Bond energy questions 23
Titration calculations 24
$n=c \times v$ 24
$m=n \times M_{r}$ 24
Titration rules 25
Titration calculations 25
Answers 26

Introduction

Welcome to this workbook and thank you for supporting me to make more videos by buying this.

This book is not designed as a text book or revision guide, but as a work book. There are lots of good (and not so good) expensive and free revision guides out there, some are listed on my YouTube channel and on other great websites. So there is no point in me adding to the pile. I'm constantly telling you the best way to revise is by practising, so I've made you a book of practice questions.

All the teaching, all the new content is available for free on my YouTube channel, this book is for you to practice and learn. The best way to approach this is to watch the teaching video, or after class try a section, check the answers and then watch the video to clarify any confusion.

Periodic Table

Due to copyright restrictions this periodic table is a bit different to the one you'll see in the exam, if you want to use the one for your exam board, you can down load it and ignore this one.

Periods \rightarrow go across
The period tells you the
number of electron shells

Groups - go down

The group tells you the number of electrons on the out shell

$\underset{\text { netime }}{\mathrm{He}}$

The periodic table tells us so much about the structure of atoms!
It can remind you how many electrons go in each shell, notice in the first period there are two elements, and in the first electron shell there are two electron, in the second period there are 8 electrons, and in the second shell there are 8 electrons.

Element	Period	Group
Calcium		
Beryllium		
Nitrogen		
Aluminium		
Sulfur		

Mass number and atomic number

The mass number is the larger of the two numbers, in the box, it doesn't matter where its positioned and when I say larger I don't mean the size of the writing.

For each of the following give the mass number and the atomic number.

Element	Mass number	Atomic number
$\begin{aligned} & 5 \\ & \mathrm{~B} \end{aligned}$ Boron $\begin{gathered} 11 \end{gathered}$		
$\stackrel{\substack{\text { chromium } \\ 52}}{24}$		
11 Na Sodium		
$\begin{aligned} & 14 \\ & \mathrm{Silicon}^{14} \\ & 28 \end{aligned}$		
Oxygen		
Helium		
	45	
	31	
		29

The number of protons, neutrons and electrons

The number of protons is the atomic number
In an atom the number of electrons is also the atomic number
The number of neutrons is the mass number minus the atomic number

Element	Number of protons	Number of electrons	Number of neutrons
Chlorine			
$\underset{\substack{\text { Bromine } \\ 80}}{\mathrm{Br}}$			
$\mathrm{Ni}_{\substack{\text { Nickel } \\ 59}}^{28}$			
\bigcirc^{8} Oxygen			
$\left.\right\|_{\substack{\text { bodine } \\ 123}} ^{\left.\right\|_{12}}$			
Argon			
Boron			
	56		
		27	
			16

Isotopes

An isotope is an element that the same number of protons and electrons but a different number of neutrons.

We write these with the name first then the mass number, for example carbon-12 is carbon with a mass of 12 and carbon-13 is carbon with a mass of 13 .

Element	Number of protons	Number of electrons	Number of neutrons
Carbon-13			
Oxygen-18			
Nitrogen-16			
Iron-55			
Magnesium-26			
Argon-41			
Sulfur-34			
Fluorine-17			
Hydrogen-3			
Calcium-38			

Ions

When an atom gains or losses and electrons it becomes an ion.

	Atom		Ion		
Element	Number of protons	Number of electrons	Number of protons	Number of electrons	Charge
Sodium					Na^{+}
Magnesium					Mg^{2+}
Oxygen				O^{2-}	
Fluorine				Fl^{-}	
Chlorine				Li^{+}	
Lithium				Ca^{2+}	
Calcium					K^{+}
Potassium					Li^{-}
	53				

Elements and atoms

Remember elements are found on the periodic table, the small number after each elements tells you how many of that elements there is in a compound.

Compound	Number of elements	Number of atoms
$\mathrm{H}_{2} \mathrm{O}$		
O_{2}		
CaCO_{3}		
NH_{3}		
CH_{4}		
$\mathrm{H}_{2} \mathrm{SO}_{4}$		
$\mathrm{HCl}^{\mathrm{HNO}}$		
CuO_{3}		
SO_{2}		

Brackets

The brackets mean that everything inside the brackets get multiplied by the small number outside the brackets.

Compound	Number of elements	Number of atoms
$\mathrm{Ca}(\mathrm{OH})_{2}$		
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$		
$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$		
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$		

Conservation of mass

When a reaction takes place we don't lose any mass and we don't gain any mass, in other words the left hand side must weigh the same as the right hand side.

Fill in the missing bits below

Magnesium	+	Oxygen	\rightarrow	Magnesium oxide		
59	+	0.19	\rightarrow		
Sodium	+	Water	\rightarrow	Sodium hydroxide	+	Hydrogen
2.19	+	0.59	\rightarrow	2.39	+
Silver sulfate	+	Magnesium	\rightarrow	Magnesium sulfate	+	Silver
14.65g	+	7.569	\rightarrow	13.98g	+	\ldots.
Calcium	+	Hydrochloric acid	\rightarrow	Calcium chloride	+	Hydrogen
17.09	+	\rightarrow	19.29	+	0.9 g
Iron oxide	+	Carbon	\rightarrow	Iron	+	Carbon dioxide
45.8 g	+	\rightarrow	52.39	+	1.29

Balancing equations

Easy - grade 5

1. \qquad $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow$ HCl
3. \qquad $\mathrm{Mg}+\mathrm{O}_{2} \rightarrow$ \qquad MgO
4. $\mathrm{N}_{2}+$ \qquad $\mathrm{H}_{2} \rightarrow$ \qquad NH_{3}
5. $\mathrm{Zn}+\mathrm{O}_{2} \rightarrow \ldots \ldots . . . \mathrm{ZnO}$
6. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow$ NO
7. \qquad $K+S \rightarrow K_{2} S$
8. $\mathrm{Mg}+\ldots \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
9. \qquad
\qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{NaOH}+\mathrm{H}_{2}$
10.Ca $+\mathrm{O}_{2} \rightarrow \ldots \mathrm{CaO}$
11. $\mathrm{Ca}+$ \qquad $\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
12. $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow$ \qquad NaCl
13. $\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \ldots \mathrm{SO}_{3}$
14............ $\mathrm{KOH}+\mathrm{MgSO}_{4} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
14. $\mathrm{K}_{2} \mathrm{O}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+$ \qquad KOH
15. $\mathrm{Na}+\ldots . . . \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots . . . \mathrm{NaOH}+\mathrm{H}_{2}$
16. $\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+$ \qquad
17. $\mathrm{K}+\ldots \ldots \ldots . \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \ldots \ldots . . \mathrm{KOH}+\mathrm{H}_{2}$
18. $\mathrm{Ag}_{2} \mathrm{SO}_{4}+\mathrm{Mg} \rightarrow \mathrm{MgSO}_{4}+$ Ag
20..........Al+......... $\mathrm{O}_{2} \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}$

Medium - grade 7

1. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Al} \rightarrow \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
2. $\mathrm{N}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}$
3. $\mathrm{C}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}$
4. $\mathrm{CaCl}_{2}+\mathrm{KOH} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{KCl}$
5. $\mathrm{P}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{3}$
6. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
7. $\mathrm{Mg}+\mathrm{CO}_{2} \rightarrow \mathrm{MgO}+\mathrm{C}$
8. $\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
9. $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}$
11. $\mathrm{TiCl}_{4}+\mathrm{Mg}_{\mathrm{Mg}} \rightarrow \mathrm{MgCl}_{2}+\mathrm{Ti}$
12. $\mathrm{PH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
13. $\mathrm{PH}_{5}+\mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}$
14. $\mathrm{CuCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NaCl}$
15. $\mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{KNO}_{3}+\mathrm{PbI}_{2}$
16. $\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{P}(\mathrm{OH})_{3}+\mathrm{HCl}$
17. $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
18. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
19. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
20. $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
21. $\mathrm{Mg}+\mathrm{HIO}_{3} \rightarrow \mathrm{MgIO}_{3}+\mathrm{H}_{2}$
22. $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaCl}+\mathrm{BaSO}_{4}$
23. $\mathrm{NaI}+\mathrm{HOCl} \rightarrow \mathrm{NaIO}_{3}+\mathrm{HCl}$
24. $\mathrm{Al}+\mathrm{MnO}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Mn}$
25. $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
26. $\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{AgNO}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{Ag}_{2} \mathrm{CO}_{3}$
27. $\mathrm{Sr}\left(\mathrm{ClO}_{4}\right)_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SrSO}_{4}+\mathrm{KClO}_{4}$
28. $\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
29. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
30. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KCl} \rightarrow \mathrm{PbCl}_{2}+\mathrm{KNO}_{3}$
31. $\mathrm{MgCO}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
32. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
33. $\mathrm{SO}_{2}+\mathrm{HNO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$
34. $\mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2}$
35. $\mathrm{HCl}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{AlCl}_{3}$
36. $\mathrm{NaOH}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cu}(\mathrm{OH})_{2}$
37. $\mathrm{HF}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{BaF}_{2}$
38. $\mathrm{NO}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
39. $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
40. $\mathrm{HCl}+\mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{O}$

Relative formula mass

To find the mass of the compound, add the mass numbers of the elements together.

Compound	Relative mass
$\mathrm{H}_{2} \mathrm{O}$	
O_{2}	
CaCO_{3}	
NH_{3}	
CH_{4}	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	
$\mathrm{HCl}^{\mathrm{HNO}} 3$	

Calculating relative atomic mass or relative isotopic mass

If you've ever wondered why Cl has a mass of 35.5 then this section is for you. The mass shown on the periodic table is an average mass of all the isotopes found on Earth. Give all answers to 4 significant figures.

1. Chlorine is found as 2 naturally occurring isotopes ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}, 75 \%$ of the chlorine is ${ }^{35} \mathrm{Cl}$ and 25% is ${ }^{37} \mathrm{Cl}$, calculate the relative atomic mass of chlorine from its isotopes.
2. Bromine is found as $50 \%{ }^{79} \mathrm{Br}$ and $50 \%{ }^{81} \mathrm{Br}$, what is the average relative atomic mass?
3. Iron can be found as 4 different naturally occurring isotopes, the most common (91.6%) is ${ }^{56} \mathrm{Fe}$, followed by $(5.9 \%){ }^{54} \mathrm{Fe},(2.2 \%){ }^{57} \mathrm{Fe}$ and $(0.2 \%){ }^{58} \mathrm{Fe}$, what is the relative isotopic mass of iron?
4. Calcium can be found as a wide range of different isotopes, the one with the highest percentage is ${ }^{40} \mathrm{Ca}(96.9 \%)$, followed by ${ }^{44} \mathrm{Ca}(2.0 \%){ }^{42} \mathrm{Ca}(0.8 \%){ }^{48} \mathrm{Ca}(0.2 \%)$ and ${ }^{43} \mathrm{Ca}(0.1 \%)$ what is the relative atomic mass of calcium?
5. Iridium is listed on the periodic table as having a mass of 192.2 , it has 2 naturally occurring isotopes ${ }^{191}$ Ir and ${ }^{193}$ Ir. What are the relative percentages of each isotope?

Moles

Moles = mass in grams $/$ relative mass

Compound	Relative mass	Mass in grams	Moles
N_{2}		28	
CO_{2}		22	
CaO	112		
$\mathrm{Fe}_{2} \mathrm{O}_{3}$		40	
PCl_{3}			27.5
${\mathrm{Mg}(\mathrm{OH})_{2}}^{\mathrm{KHSO}} 4$			2.3
$\mathrm{Na}_{2} \mathrm{SO}_{4}$			0.67
$\mathrm{H}_{3} \mathrm{AsO}_{4}$			1.56
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$			

1. 1.8 g of water is used in a reaction, how many moles are being used?
2. If 3 moles of magnesium hydroxide are required for a practical, how much should the students weigh out?
3. When decomposing calcium carbonate 1.75 moles of calcium hydroxide is produced, how much does it weigh?
4. After a reaction had finished it was found that a solid has lost 0.5 moles of nitrogen gas. How much did the weight of the solid reduce by?
5. 5.2 g of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ decomposed to make water and oxygen gas, how many moles of oxygen were released?

Percentage yield

When I'm baking cakes I follow a recipe, and always expect to end up with 24 lovely yummy cupcakes!

This never actually works, I always end up with less cupcakes then I want!

This is the difference between theoretical yield (how many you expect to get) and actual yield (how many you actually get).

To calculate the percentage yield we divide the actual mass by the theoretical mass and turn it into a percentage.

1. In a reaction a student expected to produce 56 g of calcium oxide, they only produced 42 g . What is the percentage yield?
2. An industrial reaction was expected to give a total of 1.53 tonnes, in the end it was found that 0.95 tonnes was produced, find the percentage yield.
3. When a reaction is performed on an industrial scale it is found that only 95 Kg is produced, it was expected that 145 kg would be produced. What is the percentage yield?
4. While in the lab a student was expecting to make 65 g of magnesium oxide, she only produced 54 g , what is the percentage yield?
5. When producing ammonia from nitrogen and hydrogen, the theoretical yield was 1.75 kg , in reality 0.35 kg less then this was produced. Calculate the percentage yield and give reason that the actual yield was less than the theoretical yield.

These questions combine reacting masses and percentage yield, if you haven't covered reacting masses yet do that first and come back here.
6. In the following reaction $\mathrm{Fe}_{3} \mathrm{O}_{2}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}, 0.95 \mathrm{Kg}$ of iron ore yields 0.46 kg of iron, calculate the percentage yield.
7. 1000 tonnes of Cyclohexane ($M_{r}=98$) reacts to produce 834 tonnes of methylene cyclohexane $\left(M_{r}=96\right)$ what is the percentage yield.
8. Ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is reacted with ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ to produce ethyl ethanoate $\left(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right)$, if we start with 21 g of ethanol and produce 36 g of ethyl ethanoate, calculate the percentage yield.

Atom economy

Atom economy is a lot like percentage yield but we need to look at the M_{r} not the mass.
\% atom economy $=\underline{M_{r} \text { useful product }}$
M_{r} total reactants

This is one example where producing ethanol from crude oil is advantageous to producing it from fermentation as there is no waste product.

1. Calculate the atom economy for the production of iron from its ore. $\mathrm{Fe}_{3} \mathrm{O}_{2}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$.
2. Photosynthesis produces glucose from carbon dioxide and water, what is the atom economy of this reaction? $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
3. The reaction for producing copper hydroxide is $\mathrm{CuCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NaCl}$, calculate the atom economy of this reaction.
4. Calculate the atom economy when producing calcium oxide from calcium carbonate
5. Compare the atom economy when producing ethanol by hydration and by fermentation.

Half equations

We use half equations to describe what goes on at each electrode during electrolysis, you can only add or take away electrons and make sure that the elements and charges are balanced.

Label each reaction as oxidation or reduction and give the location
 where it happens

Reaction	Oxidation or Reduction	Anode or Cathode
$\mathrm{Cu}^{2+} \ldots \ldots \ldots \ldots \ldots .$.		
$\mathrm{F}^{-} \rightarrow \mathrm{F}_{2}$		
$\mathrm{Na}^{+} \ldots ~ \rightarrow ~ N a ~$		
$\mathrm{O}^{2-} \rightarrow \mathrm{O}_{2} \ldots \ldots$.		
$\mathrm{Al}^{3+} \ldots \ldots . \ldots \ldots \ldots \ldots . . . \mathrm{Al}^{\text {a }}$		
Li+ $\rightarrow \mathrm{Li}$		
$\mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2} \ldots \ldots \ldots \ldots \ldots$.		
H^{+}............... $\rightarrow \mathrm{H}_{2}$		
$\mathrm{S}^{2-} \ldots \ldots . \ldots ~ \rightarrow ~ S ~$		
$\mathrm{Mg}^{2+} \ldots ~ \rightarrow ~ M g ~$		

Oxidation	Positive
Is	Anode
Loss (of electrons)	Negative
Reduction	Is
Is	Cathode
Gain (of electrons)	

Reacting masses

We can use equations to predict how much of a substance can be formed when a reaction takes place. There are two ways to do this, by using mole calculations or approaching it as a simple ratios question.

1. Water can be split into hydrogen and oxygen $\left(2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}\right)$ how much oxygen would be produced from 56 g of water?
2. Hydrogen peroxide can be broken down to water and oxygen gas $\left(2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\right)$ how much hydrogen peroxide will be needed to make 17 g of oxygen?
3. Magnesium chloride can be produced by the reaction of sodium metal with chlorine gas, ($\mathrm{Mg}+$ $\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}$) how much magnesium is needed to produce 193.5 g of magnesium chloride?
4. The reaction between limewater (calcium hydroxide) and carbon dioxide produces a white precipitate (the cloudy bits) how much calcium carbonate is produced from 196 g of limewater? $\left(\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}\right)$
5. Aluminium reacts with oxygen to produce aluminium oxide $\left(\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ how much aluminium oxide will be produced from 36 g of aluminium metal?

For each of these you are expected to first write and balance the equation.
6. Copper oxide (CuO) is reacted with hydrogen gas $\left(\mathrm{H}_{2}\right)$ to produce copper and water, how much copper oxide is needed to give 21 g of copper?
7. Propane gas burns completely in oxygen, how much carbon dioxide will be produced if 19 g of propane is burnt?
8. In respiration glucose is converted to carbon dioxide and water, if 36 g of glucose is reacted how much carbon dioxide will be produced?
9. Calcium carbonate reacts with hydrochloric acid how much carbon dioxide is produced from 21 g of hydrochloric acid?
10. Iron metal is reacted with hydrochloric acid and 17.9 g iron chloride is produced, how much iron is needed?

Avogadro's constant and gas volume

A mole has a fixed number of particles in it, 6.02×10^{23} and one moles of gas takes up $24 \mathrm{dm}^{3}$ of space.

You can think of it like a shoe collection, each collection is going to take the same amount of space. Just some collections are going to be full of flip flops, some full of fabulous, colourful high heels and some are going to be
 full of walking boots, but it not a complete collection until there are 6.02×10^{23} shoes in it.......I wish ©

Compound	Mr	Mass in grams	Number of moles	Number of particles	Gas volume $\left(\mathrm{dm}^{3}\right)$
KOH			1		
CO_{2}			0.5		
NaOH		50			
CaCO_{3}		34.375			
PCl_{3}		14.6		6.02×10^{23}	
SF_{6}					24
$\mathrm{MgO}^{\mathrm{C}} \mathrm{CH} \mathrm{H}_{6}$					6
NH_{3}					2
$\mathrm{P}(\mathrm{OH})_{3}$					

Endothermic and exothermic reactions

Each bond has a certain amount of energy associated with it, this energy is released when a bonds are made (an exothermic process) and energy is needed to break bonds (an endothermic process) to find the total energy given off or taken in during a reaction you needed to find the difference.

Bond energy rules

a) Write the balanced equation for the reaction
b) Draw the structural formula for each compound
c) List the types of bonds
d) List the number of each type of bond
e) Use the table to work out the energy associated with each bond
f) Multiply the number of bonds by the energy for that bond
g) Work out the total amount for bond breaking and bond making
h) Work out the difference

Bond	Bond energy in kJ per mole
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}=\mathrm{O}$	498
$\mathrm{O}-\mathrm{H}$	464
$\mathrm{C}-\mathrm{H}$	435
$\mathrm{C}-\mathrm{Cl}$	327
$\mathrm{C}=\mathrm{O}$	805
$\mathrm{Cl}-\mathrm{Cl}$	242
$\mathrm{H}-\mathrm{Cl}$	431
$\mathrm{H}-\mathrm{Br}$	366
$\mathrm{Br}-\mathrm{Br}$	193

Bond energy questions

1. Burning hydrogen $(H-H)$ in oxygen $(\mathrm{O}=\mathrm{O})$ will give off water $(\mathrm{H}-\mathrm{O}-\mathrm{H})$, calculate the energy change for this reaction.
2. Hydrogen bromide breaks down to form hydrogen gas and bromine gas, what is the energy change?
3. Hydrogen and chlorine can be reacted together to make hydrochloric acid, calculate the energy change for this reaction.
4. The combustion of methane in oxygen give off water and carbon dioxide ($C=O=C$) calculate the energy change for this reaction.
5. Methane reacts with chlorine gas to give chloromethane and hydrochloric acid, calculate the energy change for this reaction.

Titration calculations

This is potentially the hardest maths you'll come across, I'm going to break it down bit by bit.
In a titration we're looking for the end point where $\mathrm{H}^{+}=\mathrm{OH}^{-}$
$\mathrm{dm}^{3}=1$ litre
A mole is the M_{r} in grams
$\mathrm{mol} / \mathrm{dm}^{3}$ is saying 1 mole dissolved in 1 litre
You don't get given these equations in the exam, you need to remember them

$$
n=c \times v
$$

$n=$ number of moles (mol)
$c=$ concentration $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$
$v=$ volume $\left(\mathrm{dm}^{3}\right)$

1. Calculate the number of moles in $4 \mathrm{dm}^{3}$ of $1.2 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}$.
2. Calculate the number of moles in $2 \mathrm{dm}^{3}$ of $0.3 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}$
3. Calculate the number of moles of KOH in $25 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$
4. Find the concentration of 3 mol HBr in a $2 \mathrm{dm}^{3}$ solution
5. Calculate the concentration in 1 mol of NaOH in $30 \mathrm{~cm}^{3}$ of solution
6. Calculate the volume of $2.3 \mathrm{~mol} / \mathrm{dm}^{3}$ solution that contains 0.5 mol HCl

$$
m=n \times M_{r}
$$

$\mathrm{m}=$ mass (g)
$n=$ number of moles (mol)
$M_{r}=$ relative formula mass

1. What mass of NaOH is there in $2 \mathrm{dm}^{3}$ of $0.3 \mathrm{~mol} / \mathrm{dm}^{3}$ solution?
2. What mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is there in $3 \mathrm{dm}^{3}$ of $2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution?
3. What is the mass of NaOH in $25 \mathrm{~cm}^{3}$ of $0.3 \mathrm{~mol} / \mathrm{dm}^{3}$ solution?
4. What is the mass of HNO_{3} that would dissolve in $500 \mathrm{~cm}^{3}$ of water to produce a $2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution?

Titration rules

Assuming acid is known and alkali is unknown, if opposite is true just reverse.
a) Calculate the number of moles of acid used
b) Using this find the number of H^{+}ions involved in the reaction
c) This is equal to the number of OH^{-}ions involved in the reaction
d) Calculate the number of moles of alkali used
e) Calculate the concentration of the alkali

Titration calculations

1. $25 \mathrm{~cm}^{3}$ of NaOH was neutralised by $15 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}$, calculate the concentration of the alkali.
2. A solution of sodium hydroxide at $0.25 \mathrm{~mol} / \mathrm{dm}^{3}$, was used in a titration using a phenolphthalein indicator it was found that $25 \mathrm{~cm}^{3}$ of this solution was titrated with $22.5 \mathrm{~cm}^{3}$ of hydrochloric acid. What was the concentration of the acid?
3. $20.0 \mathrm{~cm}^{3}$ of sulfuric acid was titrated against $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ potassium hydroxide. If the acid required $36.0 \mathrm{~cm}^{3}$ of the alkali to be neutralised, what is the concentration of the acid?
4. $20 \mathrm{~cm}^{3}$ of a solution made from pure barium hydroxide (containing 2.74 g in $100 \mathrm{~cm}^{3}$) is titrated, using phenolphthalein indicator, against $18.7 \mathrm{~cm}^{3}$ of hydrochloric acid. What was the concentration of the HCl ?
5. $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide $\left(0.100 \mathrm{~mol} / \mathrm{dm}^{3}\right)$ was titrated with $30.0 \mathrm{~cm}^{3}$ of sulfuric acid. Find the concentration of the acid in $\mathrm{g} / \mathrm{dm}^{3}$.
6. $25.0 \mathrm{~cm}^{3}$ of a solution of sodium hydroxide was pipetted into a conical flask and titrated with $0.200 \mathrm{~mol} / \mathrm{dm}^{3}(0.2 \mathrm{M}) \mathrm{HCl}$. Using a methyl orange indicator it was found that 15.0 cm 3 of the acid was required to neutralise the alkali. Calculate the molarity of the sodium hydroxide and the concentration in $\mathrm{g} / \mathrm{dm}^{3}$.
7. 4.90 g of pure sulfuric acid was dissolved in water, the total resulting volume was $200 \mathrm{~cm}^{3}$, $20.7 \mathrm{~cm}^{3}$ of this solution was found after titration to need $10.0 \mathrm{~cm}^{3}$ of sodium hydroxide to be neutralised. What is the concentration of sodium hydroxide?

Answers

The periodic table

Element	Period	Group
Calcium	4	2
Beryllium	2	2
Nitrogen	2	5
Aluminium	3	3
Sulfur	3	6

Mass number and atomic number

Element	Mass number	Atomic number
$\underset{\substack{\text { Boron } \\ 11}}{\mathrm{~B}}$	11	5
	24	12
$\underset{\substack{\text { chromium } \\ 52}}{24}$	52	24
11 Na Sodium	23	11
${\underset{\text { Silicon }}{14}}_{2 i}$	28	14
Oxygen	16	8
Helium	4	2
Scandium	45	21
Phosphorous	31	15
Copper	64	29

The number of protons, neutrons and electrons

Element	Number of protons	Number of electrons	Number of neutrons
$\underbrace{17}_{\substack{\text { chlorine } \\ 35.5}}$	17	17	18.5
$\begin{gathered} 35 \\ \mathbf{B r} \\ \substack{\text { Bromine } \\ 80} \end{gathered}$	35	35	45
$\underset{\substack{\text { Nickel } \\ 59}}{28}$	28	28	31
$\bigcirc_{\substack{\text { Oxygen } \\ 16}}^{8}$	8	8	8
$\left.\right\|_{\substack{\text { Lodine } \\ \text { 127 }}} ^{53}$	53	53	74
Argon	18	18	22
Boron	5	5	6
Barium	56	56	81
Cobalt	27	27	32
Sulfur	16	16	16

Isotopes

Element	Number of protons	Number of electrons	Number of neutrons
Carbon-13	6	6	7
Oxygen-18	8	8	10
Nitrogen-16	7	7	9
Iron-55	26	26	29
Magnesium-26	12	12	14
Argon-41	18	18	23
Sulfur-34	16	16	18
Fluorine-17	9	9	8
Hydrogen-3	1	1	2
Calcium-38	20	20	18

Ions

	Atom		Ion		
Element	Number of protons	Number of electrons	Number of protons	Number of electrons	Charge
Sodium	11	11	11	10	Na^{+}
Magnesium	12	12	12	10	Mg^{2+}
Oxygen	8	8	8	10	O^{2-}
Fluorine	9	9	9	10	$\mathrm{~F}^{-}$
Chlorine	17	17	17	18	Cl^{-}
Lithium	3	3	3	2	Li^{+}
Calcium	20	20	20	18	Ca^{2+}
Potassium	19	19	19	18	$\mathrm{~K}^{+}$
Lithium	3	3	3	4	Li^{-}
Iodine	53	53	53	54	I^{-}

Elements and atoms

Compound	Number of elements	Number of atoms
$\mathrm{H}_{2} \mathrm{O}$	2	3
O_{2}	1	2
CaCO_{3}	3	5
NH_{3}	2	4
CH_{4}	2	5
$\mathrm{H}_{2} \mathrm{SO}_{4}$	3	7
$\mathrm{HCl}^{\mathrm{HNO}}$	2	2
CuO_{3}	3	5
SO_{2}	2	2

Brackets

Compound	Number of elements	Number of atoms
$\mathrm{Ca}(\mathrm{OH})_{2}$	3	5
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	3	9
$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	3	17
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	3	17

Conservation of mass

Magnesium	+	Oxygen	\rightarrow	Magnesium
5 g	+	0.1 g	\rightarrow	5.1 g

Sodium	+	Water	\rightarrow	Sodium hydroxide	+	Hydrogen
2.1 g	+	0.5 g	\rightarrow	2.3 g	+	0.3 g

Silver sulfate	+	Magnesium	\rightarrow	Magnesium sulfate	+	Silver
14.65 g	+	7.569	\rightarrow	13.98g	+	8.23g
Calcium	+	Hydrochloric acid	\rightarrow	Calcium chloride	+	Hydrogen
17.0g	+	3.19	\rightarrow	19.29	+	0.9 g
Iron oxide	+	Carbon	\rightarrow	Iron	+	Carbon dioxide
45.8 g	+	7.79	\rightarrow	52.3 g	+	1.29

Balancing Equations-easy!

1. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
3. $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
4. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
5. $2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}$
6. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
7. $2 \mathrm{~K}+\mathrm{S} \rightarrow \mathrm{K}_{2} \mathrm{~S}$
8. $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
9. $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
10. $2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}$
11. $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
12. $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
13. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
14. $2 \mathrm{KOH}+\mathrm{MgSO}_{4} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
15. $\mathrm{K}_{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KOH}$
16. $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
17. $3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
18. $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$
19. $\mathrm{Ag}_{2} \mathrm{SO}_{4}+\mathrm{Mg} \rightarrow \mathrm{MgSO}_{4}+2 \mathrm{Ag}$
20. $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

Balancing Equations-Medium!

1. $\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}$
2. $\mathrm{N}_{2}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{NCl}_{3}$
3. $\mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}$
4. $\mathrm{CaCl}_{2}+2 \mathrm{KOH} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{KCl}$
5. $\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$
6. $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
7. $2 \mathrm{Mg}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{MgO}+\mathrm{C}$
8. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
9. $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
11. $\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}_{2}+\mathrm{Ti}$
12. $2 \mathrm{PH}_{3}+3 \mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
13. $2 \mathrm{PH}_{5}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}+5 \mathrm{H}_{2} \mathrm{O}$
14. $\mathrm{CuCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$
15. $2 \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{PbI}_{2}$
16. $\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{P}(\mathrm{OH})_{3}+3 \mathrm{HCl}$
17. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
18. $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
19. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}$
20. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$

Balancing Equations- Hard!

1. $2 \mathrm{Mg}+2 \mathrm{HIO}_{3} \rightarrow 2 \mathrm{Mg}\left(\mathrm{IO}_{3}\right)+\mathrm{H}_{2}$
2. $\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NaCl}+\mathrm{BaSO}_{4}$
3. $\mathrm{NaI}+3 \mathrm{HOCl} \rightarrow \mathrm{NaIO}_{3}+3 \mathrm{HCl}$
4. $4 \mathrm{Al}+3 \mathrm{MnO}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Mn}$
5. $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
6. $\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{Ag}_{2} \mathrm{CO}_{3}$
7. $\mathrm{Sr}\left(\mathrm{ClO}_{4}\right)_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SrSO}_{4}+2 \mathrm{KClO}_{4}$
8. $2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2}$
9. $2 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{NO}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$
10. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KCl} \rightarrow \mathrm{PbCl}_{2}+2 \mathrm{KNO}_{3}$
11. $\mathrm{MgCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
12. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
13. $\mathrm{SO}_{2}+2 \mathrm{HNO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NO}$
14. $8 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{I}_{2}$
15. $3 \mathrm{HCl}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{AlCl}_{3}$
16. $2 \mathrm{NaOH}+\mathrm{CuSO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{Cu}(\mathrm{OH})_{2}$
17. $2 \mathrm{HF}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{BaF}_{2}$
18. $2 \mathrm{NO}_{2}+7 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
19. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
$20.2 \mathrm{HCl}+2 \mathrm{FeCl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
Relative atomic mass

Compound	Relative mass
$\mathrm{H}_{2} \mathrm{O}$	$(2 \times 1)+(1 \times 16)=18$
O_{2}	$(2 \times 16)=32$
CaCO_{3}	$(1 \times 40)+(1 \times 12)+(3 \times 16)=100$
NH_{3}	$(1 \times 14)+(3 \times 1)=17$
CH_{4}	$(1 \times 12)+(4 \times 1)=16$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$(2 \times 1)+(1 \times 32)+(4 \times 16)=98$
$\mathrm{HCl}^{(1 \times 1)+(1 \times 35.5)=36.5}$	
HNO_{3}	$(1 \times 1)+(1 \times 14)+(3 \times 16)=63$
$\mathrm{CuO}^{\mathrm{Ca}\left(\mathrm{OH}_{2}\right.}$	$(1 \times 63.5)+(1 \times 16)=79.5$
$\mathrm{Cu}_{2}\left(\mathrm{NO}_{3}\right)_{2}$	$(1 \times 40)+(2 \times 16)+(2 \times 1)=74$
$\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$(1 \times 63.5)+(2 \times 14)+(6 \times 16)=187.5$
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$(2 \times 52)+(3 \times 32)+(12 \times 16)=392$

Calculating relative atomic mass

1. 35.50
2. 80.00
3. 55.85
4. 40.02
5. $40 \% 191,60 \% 193$

Moles

Compound	Relative mass	Mass in grams	Moles
	28	28	1
CO_{2}	44	22	0.5
CaO	56	112	2
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	160	40	0.25
PCl_{3}	137.5	27.5	0.2
${\mathrm{Mg}(\mathrm{OH})_{2}}_{\mathrm{KHSO}}^{4}$	58	116	2
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	136	102	0.75
$\mathrm{H}_{3} \mathrm{AsO}_{4}$	142	326.6	2.3
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	142	95.14	0.67

1. 0.1 moles
2. 174 g
3. 129.5 g
4. 14 g
5. 0.15 moles

Percentage yield

1. 75%
2. 62%
3. 66%
4. 83%
5. 80%
6. 86%
7. 85%
8. 90%

Atom economy

1. 56%
2. 48%
3. 56%
4. 56%
5. Hydration 100%, fermentation 51%

Half equations

Reaction	Oxidation or Reduction	Anode or Cathode
$\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu}$	Reduction	Cathode
$2 \mathrm{~F}^{-}-2 e^{-} \rightarrow \mathrm{F}_{2}$	Oxidation	Anode
$\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}$	Reduction	Cathode
$2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-}$	Oxidation	Anode
$\mathrm{Al}^{3+}+3 e^{-} \rightarrow \mathrm{Al}$	Reduction	Cathode
$\mathrm{Li}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Li}$	Reduction	Cathode
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 e^{-}$	Oxidation	Anode
$2 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2}$	Reduction	Cathode
$\mathrm{S}^{2-}-2 e^{-} \rightarrow \mathrm{S}$	Oxidation	Anode
$\mathrm{Mg}^{2+}+2 e^{-} \rightarrow \mathrm{Mg}$	Reduction	Cathode

Reacting masses

1. 49.8 g
2. 36.1 g
3. 48.9 g
4. 264.9 g
5. 136 g
6. 26.3 g
7. 579
8. 52.8 g
9. 12.7 g
10. 11 g

Avogadro and gas volumes

Compound	M_{r}	Mass in grams	Number of moles	Number of particles	Gas volume $\left(\mathrm{dm}^{3}\right)$
KOH	56	56	1	6.02×10^{23}	24
CO_{2}	44	22	0.5	3.01×10^{23}	12
$\mathrm{NaOH}^{\mathrm{CaCO}_{3}}$	40	80	2	1.02×10^{24}	48
PCl_{3}	100	50	0.5	3.01×10^{23}	12
SF_{6}	146	34.375	0.25	1.51×10^{23}	6
$\mathrm{MgO}^{\mathrm{C}_{2} \mathrm{H}_{6}}$	40	14.6	0.1	6.02×10^{22}	2.4
NH_{3}	28	40	1	6.02×10^{23}	24
$\mathrm{P}(\mathrm{OH})_{3}$	17	4.25	1	6.02×10^{23}	24

Endothermic and exothermic reactions

1. $-486 \mathrm{~kJ}^{2} \mathrm{~mol}^{-1}$
2. $+103 \mathrm{~kJ} / \mathrm{mol}^{-1}$
3. $-184 \mathrm{~kJ} / \mathrm{mol}^{-1}$
4. $-730 \mathrm{~kJ} / \mathrm{mol}^{-1}$
5. $-81 \mathrm{~kJ} / \mathrm{mol}^{-1}$

Titration calculations

1. 4.8 mol
2. 0.6 mol
3. 0.005 mol
4. $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$
5. $33.3 \mathrm{~mol} / \mathrm{dm}^{3}$
not reoccurring-this does not exist in science!!
6. $0.22 \mathrm{dm}^{3}$
7. 24 g
8. 588 g
9. 0.3 g
10. $63 g$
11. $0.12 \mathrm{~mol} / \mathrm{dm}^{3}$
12. $0.278 \mathrm{~mol} / \mathrm{dm}^{3}$
13. $0.045 \mathrm{~mol} / \mathrm{dm}^{3}$
14. $0.342 \mathrm{~mol} / \mathrm{dm}^{3}$
15. $4.08 \mathrm{~g} / \mathrm{dm}^{3}$
16. $4.8 \mathrm{~g} / \mathrm{dm}^{3}$
17. $1.035 \mathrm{~mol} / \mathrm{dm}^{3}$
